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Abstract
Transformer has gained widespread adoption in
modeling time series due to the exceptional abil-
ity of its self-attention mechanism in capturing
long-range dependencies. However, when process-
ing time series data with numerous variates, the
vanilla self-attention mechanism tends to distribute
attention weights evenly and smoothly, causing
row-homogenization in attention maps and further
hampering time series forecasting. To tackle this
issue, we propose an advanced Transformer ar-
chitecture entitled SDformer, which designs two
novel modules, Spectral-Filter-Transform (SFT)
and Dynamic-Directional-Attention (DDA), and
integrates them into the encoder of Transformer to
achieve more intensive attention allocation. Specif-
ically, the SFT module utilizes the Fast Fourier
Transform to select the most prominent frequen-
cies, along with a Hamming Window to smooth and
denoise the filtered series data; The DDA module
applies a specialized kernel function to the query
and key vectors projected from the denoised data,
concentrating this innovative attention mechanism
more effectively on the most informative variates
to obtain a sharper attention distribution. These
two modules jointly enable attention weights to be
more salient among numerous variates, which in
turn enhances the attention’s ability to capture mul-
tivariate correlations, improving the performance
in forecasting. Extensive experiments on public
datasets demonstrate its superior performance over
other state-of-the-art models. Code is available at
https://github.com/zhouziyu02/SDformer.

1 Introduction
Time series analysis holds significant value in a wide array of
practical applications, including weather forecasting [Huang
et al., 2023], energy management [Dong et al., 2023] and
public opinion analysis [O’Connor et al., 2010]. Recently,
Transformer [Vaswani et al., 2017] has fostered the modeling
of long-range dependencies in sequential data, making them

∗Gengyu Lyu is the corresponding author.
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Figure 1: Pre-softmax attention maps from one layer in
(a)PatchTST, (b)iTransformer, (c)Transformer and (d)SDformer.
We also compute Gini coefficients for the attention matrices, which
provide a clear indicator of the focus level of the attention mech-
anism across varieties. We observe that PatchTST, iTransformer
and vanilla Transformer score 0.098, 0.078 and 0.081 respectively,
whereas SDformer achieves a higher value of 0.154. This numeric
disparity suggests that SDformer has a more concentrated attention
distribution, indicating its improved ability to enhance focus on key
variates in time series thereby alleviating the ‘smooth’ problem.

particularly suited for time series analysis [Wen et al., 2023].
For instance, Pyraformer [Liu et al., 2021] proposes a hier-
archical pyramidal attention mechanism for Transformer ar-
chitecture, which captures temporal dependencies at different
ranges while ensuring its linear complexity in both time and
memory. Autoformer [Wu et al., 2021] introduces a seasonal-
trend decomposition operation into Transformer, which in-
corporates an auto-correlation mechanism to achieve more
precise series-wise correlations discovery.

Although the above methods have achieved superior per-
formance, they still suffer from some critical shortcomings.
Especially, when modeling some datasets with a large num-
ber of variates (e.g., Traffic dataset with 862 variates), the
vanilla self-attention mechanism often fails to effectively al-
locate attention weights among multiple variates, which is in-
tuitively reflected in the homogenization between rows of the
attention map. As shown in Figure 1(a)-(b), the color distri-
bution of the attention map in iTransformer [Liu et al., 2023]
and vanilla Transformer [Vaswani et al., 2017] is quite sparse
with fewer intense areas, indicating a dispersed focus and an
inability to prioritize critical inter-variate correlations.

To tackle this issue, we propose an innovative Transformer-
based model named SDformer, which integrates two strategic
modular designations, Spectral-Filter-Transform (SFT) and
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Dynamic-Directional-Attention (DDA), to reallocate atten-
tion weights for increasing the heterogeneity of the attention
map, further boosting the forecasting performance. Techni-
cally, in the SFT module, we utilize the Fast Fourier Trans-
form to filter out insignificant frequencies including meaning-
less noise and fluctuations, accordingly preserving the essen-
tial features of the time series, such as continuity, periodicity
and trend. Afterward, a bell-shaped Hamming Window is ap-
plied to the filtered data, which utilizes its spectral properties
to minimize edge effects and enhance the smoothness of the
series [Mottaghi-Kashtiban and Shayesteh, 2011]. The above
two operations significantly improve data quality by effec-
tively reducing noise, further facilitating better representation
learning in subsequent modules. In the DDA module, we in-
troduce a novel kernel function, equipped with dynamic pa-
rameters and directional weights, which is applied to Query
(Q) and Key (K) simultaneously (where Q and K are linear
projected from the smoothed series in the SFT) to bring sim-
ilar Q-K pairs closer to their nearest axis, yielding higher at-
tention scores, while distancing dissimilar Q-K pairs to their
opposite axis, resulting in relatively lower scores. Such op-
eration sharpens the distribution of attention weights across
numerous variates, and consequently makes the self-attention
mechanism more capable of identifying and prioritizing key
inter-variate patterns, thereby achieving higher expressive-
ness and effectively mitigating the ‘smooth’ problem.

As a result, Figure 1(c) visually shows more intense col-
ors in the attention map compared with the other two maps
on certain regions, indicating a stronger focus capacity on
important variates. In general, these two novel components
collectively overcome the limitation of the vanilla attention
mechanism in Transformer when modeling time series with
a large number of variates, enabling a stronger capacity for
forecasting multivariate time series data. The contributions
of our paper are summarized in three folds:

1. We propose a novel Transformer architecture (named
SDformer) for long-term time series forecasting. To the
best of our knowledge, it is the first time to address the
problem of smooth attention distribution when modeling
time series data with a large number of variates.

2. The Spectral-Filter-Transform and Dynamic-Directional
Attention modules are designed for filtering pivotal fre-
quency features and sharpening attention distribution re-
spectively, which jointly enable the attention weights to
be more salient among variates, further fostering the at-
tention’s ability to capture multivariate correlations and
improve the final forecasting performance.

3. Extensive experiments on various datasets demonstrate
the effectiveness of SDformer against other state-of-the-
art methods. Especially, it achieves superior perfor-
mance on some datasets with numerous variates, such
as 11.6% forecasting error reduction on Traffic dataset.

2 Related Work
2.1 Forecasting with Special Attention Mechanism
In multivariate time series forecasting, several models fo-
cus on innovating attention mechanisms to enhance the fore-

casting performance. For example, Informer [Zhou et al.,
2021] and Reformer [Kitaev et al., 2020] leverage ProbSparse
and locality-sensitive hashing mechanisms in modeling long
sequences data. Pyraformer [Liu et al., 2021] employs a
pyramidal attention module to capture multi-resolution tem-
poral dependency, while ContiFormer [Chen et al., 2023]
merges attention with Neural ODEs for irregular time series.
Moreover, PatchTST [Nie et al., 2023] focuses on excavat-
ing patch-wise correlations using self-attention. All of these
attention mechanisms are designed from the perspective of
balancing between computational complexity and forecasting
performance. To the best of our knowledge, none of the ex-
isting attention mechanisms effectively address the issue of
overly smooth attention distribution in time series analysis.

2.2 Forecasting in the Frequency Domain

Except for the above attention innovation-based methods,
various methods harness strategies in the frequency domain
with different foundation models to improve forecasting re-
sults. SMF [Zhang et al., 2017] decomposes time series
into distinct frequency components for varied time horizon
forecasts. StemGNN [Cao et al., 2020] combines GNN and
Discrete Fourier Transforms to examine both inter-series and
intra-series correlations. CoST [Woo et al., 2022a] and ATFN
[Yang et al., 2020] focus on seasonal-trend separation and
dynamic periodic pattern capture. FreTS [Yi et al., 2023]
leverages its frequency-domain MLPs to explore global de-
pendencies and enhance key frequency component learning.
Although these models signify a trend towards exploring fre-
quency domain strategies in time series analysis, they often
directly utilize enhanced data for subsequent learning without
considering potential noise. This oversight leads to the inad-
vertent amplification of noise components during frequency
decomposition, compromising the forecasting accuracy.

2.3 Forecasting with Special Attention and
Methods in the Frequency Domain

Based on the above two types of methods, some recent meth-
ods combine both innovative attention mechanisms and fre-
quency domain analysis to achieve notable progress in time
series forecasting. For example, Autoformer [Wu et al.,
2021] utilizes an Auto-Correlation mechanism for improved
temporal pattern recognition. FEDformer [Zhou et al., 2022]
fuses Transformer architecture with seasonal-trend decom-
position, exploiting frequency domain sparsity for thorough
analysis. ETSformer [Woo et al., 2022b] introduces expo-
nential smoothing attention, enhancing both efficiency and
interpretability. However, existing models overlook the am-
plification of noise during frequency decomposition and the
challenge of overly smooth attention distribution. To the best
of our knowledge, SDformer is the first model to tackle these
overlooked issues by integrating the SFT and DDA into the
Transformer architecture, which significantly enhances the
accuracy of multivariate time series forecasting.
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Figure 2: The framework of our proposed SDformer: (a) The Spectral-Filter-Transform (SFT) is a novel preprocessing method for time
series, enhancing data analysis by retaining key frequency components. (b) The Dynamic-Directional-Attention (DDA) mechanism is an
improvement over the vanilla self-attention, as it dynamically modulates the closeness of Q-K pairs according to their similarity.

3 SDformer
3.1 Problem Formulation
Formally speaking, we denote a multivariate time series by
[X1, X2, . . . , XT ] ∈ RN×T , where each Xt ∈ RN corre-
sponds to the observations of N variates at the t-th timestamp
for T total timestamps. For any given time t, the input to the
model is a window of the preceding L observations, desig-
nated as Xt = [Xt−L+1, Xt−L+2, . . . , Xt] ∈ RN×L. The
forecasting objective at time t aims to predict the subsequent
τ values, represented as Yt = [Xt+1, Xt+2, . . . , Xt+τ ] ∈
RN×τ . The forecasting model, denoted by fθ, utilizes the
historical data Xt to estimate the future values Ŷt, such that
the forecast is given by Ŷt = fθ(Xt).

3.2 Overall Architecture
Figure 2 shows the overall framework of SDformer includ-
ing the Spectral-Filter-Transform (SFT) module, the Embed-
ding operation, the stacked Dynamic-Directional-Attention
(DDA) Encoder Blocks module and the Projection operation.
Technically, the input time series is denoised in the SFT, and
its variates are independently embedded into separate tokens
[Liu et al., 2023]. These tokens are then fed into stacked DDA
Encoder Blocks to extract complex representation, where the
DDA achieves improved inter-variate correlations discovery
through its unique kernel function, while layer normalization
and feed-forward network with residual connections are uti-
lized to learn temporal dependencies and alleviate series non-
stationarization. Finally, the representations are decoded for

Algorithm 1 The Spectral-Filter-Transform module

1: Input: Time series X ∈ RT×N , Length T , Variates N
2: Output: Denoised and smoothed series Xh ∈ RT×N

3: Initialization: A Hamming Window wn sized w; the
number of top frequency components k.

4: for n = 1 to N do
5: Xfn = FFT(xn) {Fast Fourier Transform}
6: Xfkn

= TopK(Xfn , k) {Select k frequencies}
7: xifn = IFFT(Xfkn

) {Convert to the time domain}
8: xpn

= Reflective Padding(xifn , wn)
9: xhn

= Applying Window(xpn
, wn)

10: end for
11: Xh = Concat(xhn) {Concatenate N univariate series}
12: Return: Xh

final results via the Projection operation. Since our model fo-
cuses on addressing the insufficiency of attention mechanism
in modeling time series with numerous variates, in this paper,
we chiefly introduce the designed SFT and DDA, and explain
how they discover effective multivariate correlations.

3.3 Spectral-Filter-Transform (SFT)
The Spectral-Filter-Transform (SFT) module plays a pivotal
role in denoising and smoothing the input time series data at
the beginning of our model. It achieves this data augmenta-
tion through a two-stage cross-domain process as illustrated
in Algorithm 1: Frequency Domain Denoising (step 5, 6 and
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7) and Time Domain Smoothing (step 8 and 9). It is note-
worthy that, before conducting the frequency domain denois-
ing, we treat multivariate time series as multiple univariate
time series (inspired by the ‘channel-independence’ designa-
tion [Nie et al., 2023]), processing them individually in the
SFT and eventually concatenating all the processed univari-
ate series for subsequent operations.

Frequency Domain Denoising
Denoising is crucial in time series analysis to enhance fore-
casting accuracy by mitigating the impact of noise on the
identification of periodic or trend patterns. In this paper, we
propose a new denoising strategy that converts the time series
into its corresponding frequency domain to alleviate the ran-
dom environmental noise and white noise in the time series.
Specifically, we first utilize the Fast Fourier Transform (FFT)
to convert a univariate time series x ∈ RT with length T into
the frequency domain Xf , i.e.,

Xf =
T−1∑
t=0

x[t]e−
2πi
T kt, k = 0, . . . , T − 1. (1)

Then, we retain the highest k frequency components to filter
out insignificant frequencies by Xfk = TopK(Xf , k), where
TopK(Xf , k) selects the k largest amplitudes and k is the
hyper-parameter. Afterward, the retained frequency spectrum
Xfk is transformed back into its corresponding time domain
xif by adopting the Inverse Fast Fourier Transform (IFFT)
for further analysis in subsequent operations, i.e.,

xif =
1

T

T−1∑
k=0

Xfke
2πi
T kt, t = 0, . . . , T − 1. (2)

Time Domain Smoothing
After obtaining the denoised time series xif , we further pro-
cess the time series by implementing smoothing techniques
to mitigate spectral leakage effects [Mottaghi-Kashtiban and
Shayesteh, 2011], where a convolution operation by window-
ing function is useful to smooth transitions at the boundaries
and reduce discontinuities. Specifically, we first define a bell-
shaped Hamming Window with the size of w (w is an even
number) and a window function

w[n] = 0.54− 0.46 cos

(
2πn

w

)
, n = 1, . . . , w, (3)

where n indexes the sample points within the window. Sub-
sequently, the denoised series xif from Eq.2 is padded reflec-
tively to ensure its length matches the window size w by

xp[n] =


xif

[
w
2 − n

]
, 1 ≤ n ≤ w

2

xif [n− w
2 ],

w
2 < n ≤ N + w

2

xif [N + w − n], N + w
2 < n ≤ N + w

(4)

According to Eq.4, the first and last w
2 elements of the fil-

tered series xif are mirrored and appended at the beginning
and end of the series respectively. Such operation effectively
extends the series x[n] to a new length of N +w, where N is
the original length of xif , thereby adapting to the subsequent

convolution smoothing operation, i.e.,

xh[t] =

w∑
n=1

xp[t+ n] · w[n]
w∑

n=1
w[n]

, t = 1, . . . , T, (5)

where the smoothed series xh[t] is calculated by taking a
weighted average of the series at each time point t and T de-
notes the total length.

After the above operations, we concatenate all xh cor-
responded to N variates to obtain a multivariate time se-
ries X ∈ RT×N with length T and the number of variates
N , where the X maintains the same shape as the input se-
quence of the SFT, simultaneously achieving both denoising
and smoothing effectively.

3.4 Dynamic-Directional-Attention (DDA)
To capture more reliable multivariate correlations, we intro-
duce a new Dynamic-Directional-Attention (DDA) mecha-
nism to calculate attention weights for more effective at-
tention distribution. The DDA mechanism operates on the
principle of dynamically reorienting and scaling the Query
Q ∈ RM×H×E and Key K ∈ RL×H×E , where M and L are
sequence lengths, H is the number of heads, and E denotes
dimensions per head. The attention score within each head of
the DDA is formulated as:

Score(Qi,Kj) = ϕp(Qi)ϕp(Kj)
T , (6)

where ϕp(x) = fp(tan(x)) is a specially designed func-
tion that is applied to both the query and key simultane-
ously. Here, ϕp(x) is defined by the composition of a non-
linear mapping tan(x) and a special kernel function fp(x) =

x ·wdir · (std(x))−p ·λdyn, where p is the element-wise power,
wdir and λdyn are learnable parameters representing direc-
tional weight and dynamic parameter, respectively. These
two parameters contribute to the ‘dynamic’ effect of our pro-
posed DDA. Moreover, std(x) represents the standard devia-
tion of the input x.

In addition, the DDA introduces a dynamic scaling factor
τ to calculate the attention weight A, which is formulated as:

A = Dropout
(

Softmax
(
scale · Score

τ

))
, (7)

where τ =
√

var(Score) dynamically normalizes the scores,
and var(Score) calculates the variance of score, scale is a pre-
softmax scaling factor. A dropout procedure follows the soft-
max to regularize the attention weights A, reducing overfit-
ting by randomly zeroing a portion of the weights during the
training phase. Finally, the Output of this module is com-
puted as a weighted sum of the value matrix:

Output =
∑
s

A ·V. (8)

Analysis on the Kernel Function
The essence of the DDA module lies in its specialized ker-
nel function fp, which effectively sharpens the contrast in the
attention distribution for all the Q-K pairs, so that the issue
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Group1

Group2

Figure 3: The vectors include a query q before applying the kernel
function, and a query f2(q) after applying the kernel function. They
also include keys k1 to k4 before the application of the kernel func-
tion, and keys f2(k1) to f2(k4) after its application.

of smooth attention weight distribution can be alleviated. To
illustrate its effect more clearly, Figure 3 provides an exam-
ple demonstrating the impact of fp. Essentially, fp draws
each vector closer to its nearest axis. The parameter p is cru-
cial here, as it determines the extent of this vector reorienta-
tion. This process aids in categorizing the vectors into distinct
groups based on their proximity to specific axes as illustrated
in the two groups in Figure 3. As a result, the similarities of
Q-K pairs within the same group are enhanced, while those
within different groups are weakened. Here, ‘similarity’ rep-
resents the attention score; therefore, the amplified similarity
distribution results in a sharper attention weight distribution.

4 Experiments
4.1 Experimental Setting
Datasets. We employ seven real-world time series bench-
marks for comparative study, including Weather, Exchange,
Traffic, Illness, Electricity and ETT (2 subsets)1.
Baselines. We compare SDformer with eleven state-of-the-
art models from three categories, including (1) Transformer-
based models: iTransformer [Liu et al., 2023], PatchTST [Nie
et al., 2023], FEDformer [Zhou et al., 2022], Autoformer
[Wu et al., 2021]. (2) TCN-based model: TimesNet [Wu et
al., 2023] and (3) MLP-based models: DLinear [Zeng et al.,
2023].
Evaluation Metrics. Two widely-used evaluation metrics
including Mean Squared Error (MSE) and Mean Absolute
Error (MAE) are employed for quantifying the accuracy of
predictions among all comparing methods.
Implementation Details. Our experiments are conducted
using PyTorch on a single NVIDIA RTX3090 24GB GPU.
For model optimization, we employ the ADAM optimizer
[Kingma and Ba, 2014] to optimize the L2 loss, selecting an
initial learning rate from {1× 10−3, 5× 10−4, 1× 10−4}.

4.2 Experimental Results
Table 1 summarizes the notable superiority of SDformer in
long-term forecasting, particularly on some datasets with nu-
merous variates, e.g., Traffic dataset. Specifically, SDformer

1Datasets are provided in Autoformer [Wu et al., 2021].

has an average decrease of 15% and 8.5% in MSE and MAE
over the previous SOTA iTransformer [Liu et al., 2023], high-
lighting its enhanced ability in modeling high-dimensional
time series data as well as capturing reliable multivariate cor-
relations. Besides, SDformer also exhibits its superior ability
across other datasets. For instance, it outperforms another
SOTA DLinear [Zeng et al., 2023] by 17% in MSE and MAE
on ETTm2 dataset. In a nutshell, the enhanced ability to han-
dle complex multivariate correlations makes SDformer par-
ticularly suitable for tackling the intricacies of multivariate
time series forecasting challenges.

4.3 Model Analysis
The Effectiveness of the SFT Module
Figure 4 presents two comparative case analyses on the
Spectral-Filter-Transform (SFT), where the solid lines repre-
sent the post-SFT series and the corresponding dashed lines
depict the pre-SFT series. The solid lines exhibit fewer fluc-
tuations, indicating a conspicuous attenuation of noise and an
enhanced smoothness compared to their dashed counterparts.
This denoising and smoothing effect is pivotal for the sub-
sequent extraction of semantic temporal patterns like trends
and continuity, and is also essential for discovering multivari-
ate correlations, further benefiting precise series forecasting.
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Figure 4: Comparison of original and transformed time series be-
fore and after the Spectral-Filter-Transform module. Two cases are
selected from Traffic dataset and colored in red and blue.
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Figure 5: Query and Key shows a more intensive distribution after
applying the kernel function. Visualization after PCA and t-SNE.
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Methods SDformer iTransformer DLinear PatchTST TimesNet FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2 0.288 0.332 0.291 0.334 0.350 0.401 0.255 0.327 0.291 0.333 0.305 0.349 0.327 0.371
ETTh2 0.378 0.401 0.384 0.407 0.559 0.515 0.380 0.406 0.414 0.427 0.437 0.449 0.450 0.459
Weather 0.258 0.278 0.261 0.281 0.265 0.317 0.354 0.348 0.259 0.287 0.309 0.360 0.338 0.382
ECL 0.176 0.269 0.180 0.261 0.212 0.300 0.204 0.291 0.192 0.295 0.214 0.327 0.227 0.338

Exchange 0.356 0.404 0.365 0.407 0.354 0.414 0.362 0.404 0.416 0.443 0.519 0.429 0.613 0.539
Traffic 0.408 0.278 0.423 0.282 0.625 0.383 0.480 0.304 0.620 0.336 0.610 0.376 0.628 0.379

ILI 2.066 0.915 2.212 0.930 4.398 1.422 1.443 0.797 2.139 0.931 2.847 1.144 3.006 1.161

Table 1: Long-term forecasting results with forecasting lengths O ∈ {24, 36, 48, 60} for ILI, and O ∈ {96, 192, 336, 720} for other datasets
and fixed lookback length I = 96. Results are averaged from various prediction lengths. Red: best, Blue: second best.

SDformer Attention Map Close-up iTransformer Attention Map Close-up
Variates: 430,431,450,457
from the Traffic Dataset

Case 2

Case 1

0.0

1.0

-1.0

Figure 6: The visualization of attention maps for two sets of time series from the Traffic dataset in Case 1 and Case 2. It highlights specific
points within the learned score maps that represent different degrees of similarity of variates. Due to the large size of the attention maps (i.e.
866×866), a close-up section of the entire map is captured to more clearly showcase the color differences of individual ‘pixels’ in each map.

In order to validate the effectiveness of the Dynamic-
Directional-Attention (DDA) module, especially its special
kernel function fp, we present a comparative visualization
in Figure 5 to show the Query and Key’s distribution before
and after applying the kernel function. Given that the Query
and Key are tensors with high dimensions, we use two com-
mon dimension reduction methods (PCA and t-SNE) to map
them into 2D space as scatters for intuitive comprehension. In
the left figure, the post-function Query and Key scatters show
more intensive grouping compared to their pre-function state,
which is echoed in the right figure, where the post-function
scatters are similarly more concentrated. The intensiveness
indicates the kernel function effectively encloses Query and
Key that are similar, potentially leading to more distinct at-
tention distribution among variates.

The Joint Evaluation of the SFT and DDA Module
We also evaluate the effectiveness of our proposed SFT and
DDA modules from a joint perspective on the learned multi-
variate attention map in Figure 6. Specifically, we randomly
select two sets of time series called Case 1 and Case 2, where

it is obvious that the similarity between the two series in Case
1 is higher than that in Case 2. Afterward, we compare the
regions in attention maps that correspond to Case 1 for SD-
former and iTransformer, which reveals that SDformer as-
signs a higher attention score to similar series than that in
iTransformer, whereas the attention score in SDformer is rel-
atively lower for the dissimilar series in Case 2. Such discrep-
ancy indicates that SFT and DDA jointly increase the atten-
tion score for similar Q-K pairs and reduce it for dissimilar
ones. Such a result demonstrates the capability of SDformer
for more distinctive and uneven attention allocation among
numerous variates, enabling more effective multivariate cor-
relations discovery.

To further elaborate on the effectiveness of our proposed
SFT and DDA in solving the smooth attention distribution,
we compute the Gini coefficients and ranks of the attention
matrices for each layer in SDformer and iTransformer, which
are summarized in Table 2. These two metrics are used to
assess the model’s capability to prioritize significant inter-
variate correlations by analyzing the distribution of attention
weights, where higher Gini coefficients and ranks indicate
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Methods iTransformer SDformer

Metric Gini Rank Gini Rank

Layer 1 0.078 260 0.154 344
Layer 2 0.086 281 0.244 375
Layer 3 0.104 302 0.223 365
Layer 4 0.095 296 0.268 459

Table 2: Comparison of the Gini coefficients and the ranks of atten-
tion matrix from iTransformer and SDformer in each Encoder layer,
where we separately train the two models with four encoder layers.

a more uneven distribution [Han et al., 2023]. As a result,
SDformer consistently shows higher Gini coefficients across
all layers than iTransformer, highlighting the more concen-
trated attention weights distribution. Furthermore, the rank in
SDformer reaches 459 in the fourth layer, surpassing iTrans-
former’s 296, which suggests a greater diversity in feature
representation. Collectively, these quantitative results cor-
roborate the effectiveness of SFT and DDA in overcoming
attention matrix homogeneity, illustrating their efficiency in
identifying key variates to capture multivariate correlations.

4.4 Further Analysis
Ablation Study
We conduct ablation studies on Weather and ETTm2 datasets
to validate the indispensability of our proposed SFT and DDA
module from three perspectives: (1) ‘proposed’ represents
the intact SDformer proposed in this paper. (2) wo/DDA:
the Dynamic-Directional-Attention in SDformer is replaced
with the vanilla self-attention. (3) wo/SFT: the Spectral-
Filter-Transform module is removed. Specifically, Figure 7
illustrates the results of the ablation studies, where removing
any modular component will lead to performance degradation
(higher MSE). Such results suggest that without the SFT, the
model becomes more prone to interference from environmen-
tal or white noise, making it difficult to accurately capture
the temporal patterns in time series data, which negatively
impacts the forecasting accuracy. Additionally, we observe
that replacing our DDA with the vanilla self-attention also
results in a higher forecasting error, indicating that vanilla
self-attention is less effective than our Dynamic-Directional-
Attention in modeling multivariate time series with numerous
variates. In summary, these two components collectively im-
prove the model’s performance in time series forecasting.
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Figure 7: Ablation studies on Weather and Traffic dataset.

Hyperparameter Sensitivity

The hyperparameter analysis in Figure 8 examines the effects
of top-k values and window size in the SFT module on Ex-
change dataset. We adjust the window size while keeping the
top-k constant, and vice versa. We find that a larger top-k
value correlates with lower MSE, suggesting that retaining
more frequency components is crucial for capturing complex
temporal dynamics in long-term forecasting. Conversely, a
smaller selection of top-k values can distort key temporal fea-
tures of the series, e.g., periodicity and trends. The analysis
also reveals that the larger window size of the Hamming Win-
dow in the SFT module leads to higher MSE, implying that
the huge window may distort the inherent characteristics of
the input time series, especially in our small lookback win-
dow with 96 lengths. In summary, given the modest varia-
tions in MSE with changes in both the top-k values and win-
dow size in the SFT module, SDformer exhibits robustness,
maintaining stable performance despite alterations in these
hyperparameters.
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Figure 8: Analysis of the top-k and the window size of Hamming
Window in the SFT module on Exchange dataset.

5 Conclusion

This paper proposes SDformer, a novel Transformer-based ar-
chitecture that concentrates on tackling the dispersed distribu-
tion of attention weights in Transformer when modeling time
series with numerous variates. Specifically, we introduce the
Spectral-Filter-Transform module to denoise and enhance the
smoothness of time series. Besides, we propose the Dynamic-
Directional-Attention module to sharpen the distribution of
attention weights on the most informative variates. These in-
novations jointly boost the ability of SDformer to discern and
utilize multivariate correlations. Experiments across various
datasets underscore its efficiency and accuracy, marking a no-
table advancement in long-term forecasting tasks. Future re-
search will explore the scalability of SDformer on large-scale
real-world datasets and deploy it to support public use.
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